Ваш регион

Москва

&nbps;

Радионуклиды

Радионуклиды — радиоактивные атомы с данным массовым числом и атомным номером а для изомерных атомов — и с определенным энергетическим состоянием атомного ядра. Атомы являются сложными системами, состоящими из частиц — волн трех категорий: протонов и нейтронов в ядре атома и электронов окружающих ядро и образующих электронную оболочку. На ядро приходится почти вся масса атома. Общее число протонов и нейтронов (нуклонов) составляет массу нуклида. Некоторые могут находиться в различных ядерно-энергетических состояниях. Одно из этих состояний представляют изотопы — нуклиды с одинаковым числом протонов, другое — изобары — атомы с различным числом протонов и нейтронов, но с одинаковым массовым числом (например, ).

    Радионуклиды широко применяются в народном хозяйстве, технике, науке и медицине. С их помощью изучают физиологические и биохимические процессы в норме и при патологии, а так же закономерности миграции и обмена химических элементов в окружающей среде, организме животных и человека. Получены данные о закономерностях рассеяния искусственных и естественных Р. в общепланетарном масштабе и поведении их в отдельных экологических системах, о процессах круговорота веществ и энергии, взаимодействия природных сфер (атмосфер гидросферы, суши) между собой.

    В медицинской практике Р. применяют для лечения и диагностики различных заболеваний, а так же для радиационной стерилизации медицинских изделий, материалов, медикаментов. В клинике используют радиодиагностические и радиотерапевтические препараты (открытые радиофармацевтические препараты) и закрытые радиоизотопные источники излучения.

    Знакомство практического врача с Р., особенностями их биологического действия (см. Радиотоксикология) необходимо в связи с реальной возможностью радиоактивного загрязнения местности в результате аварий на ядерных производствах, как это имело место на Чернобыльской АЭС, когда огромные контингенты населения подверглись воздействию самых разнообразных радионуклидов.

    Радиоактивные изотопы — это Р. определенных элементов. Поэтому их обозначают символами соответствующих химических элементов вверху слева ставят массовое число, например, химические символы радиоактивных изотопов магния (Mg) имеющего Р. с массовыми числами 20, 21, 22, 23, 27, 28, — 20Mg, 21Mg, 22Mg, 23Mg, 27Mg, 28Mg. Все Р. делятся на естественные, или природные, и искусственные, получаемые при ядерных реакциях. Число естественных Р. сравнительно невелико (100); искусственные Р. получены у всех без исключения элементов периодической системы, число их приближается к 1500, что не является пределом.

    Практически устойчивыми считают все элементы периодической системы Д.И. Менделеева, начиная от водорода (Н), значащегося под № 1, и кончая висмутом (Bi), значащимся под № 83, за исключением технеция (Тс) — № 43 и прометия (Рм) — № 61. Все элементы, следующие за висмутом, радиоактивны.

    Среди практически устойчивых элементов есть ряд элементов, природные атомы которых в той или иной степени радиоактивны, — это калий (К), рубидий (Rb), индий (In), лантан (La), самарий (Sm), лютеций (Lu) и рений (Re).

    Естественные Р. связаны друг с другом генетическим родством и образуют так называемые ряды, или семейства. В каждом семействе процесс распада, начавшись с ядра-прародителя и пройдя через целую серию промежуточных дочерних ядер, также нестойких, заканчивается на устойчивом нерадиоактивном ядре — потомке. Ядра-прародители: атом урана (U) с массой 238, возглавляющий радиоактивное семейство урана; атом тория (Th) с массой 232, атом урана с массой 235, называвшийся ранее актиноураном. Конечные ядра, являющиеся продуктами многоступенчатых превращений в этих семействах, — ядра изотопов свинца (Pb) с массой 206, 208, 207.

    Известно несколько видов радиоактивных превращений. a-Распад — самопроизвольное превращение ядер, сопровождающееся испусканием (a-частиц, т. е. двух протонов и двух нейтронов, образующих ядро 42Не. В результате заряд исходного ядра уменьшается на 2, а общее число нуклидов, или массовое число, — на 4 единицы (например, 22688Ra ® 22288Ra + 4Не).

    b-Распад — самопроизвольное превращение ядер, при котором заряд исходного ядра изменяется на единицу, а массовое число остается тем же. b-Распад представляет собой взаимопревращение входящих в состав ядра протонов и нейтронов, сопровождающееся испусканием или поглощением электронов (е-) или позитронов (е+), а также нейтрино (n) и антинейтрино (n) Существует три вида b-распада: 1) электронный; 2) позитронный; 3) электронный захват. При b-распаде происходят взаимные превращения протонов и нейтронов до достижения наиболее выгодного соотношения протонов и нейтронов, обеспечивающего устойчивое содержание ядра.

    Естественные Р., содержащиеся в горных породах, водоемах и почвах, вместе с космическим излучением являются источниками внешнего радиационного фона. 40К и радионуклиды урана и тория, которые находятся в организме в равновесных концентрациях в результате поступления с пищей, питьевой водой и атмосферным воздухом, являются источниками внутреннего облучения. За счет естественных Р., содержащихся в строительных материалах, выбросах электростанций в результате сжигания ископаемого топлива, светосоставах некоторых приборов и часов, формируется техногенный радиационный фон (см. Радиационный фон).

    Искусственные Р. получают на ядерных реакторах и ускорителях заряженных частиц. Уже синтезированы заурановые элементы (№ 93—103). Элементом № 103 (лоуренсием) заканчивается серия элементов под названием «актиниды». Искусственным путем были получены курчатовий — 260104Ku, нильсборий — 261(260) Ns. Последний по химическим свойствам является аналогом тантала (Та).

    Радионуклиды различаются физическим периодом полураспада, (Т1/ — время, в течение которого число ядер данного Р. в результате самопроизвольных ядерных превращений уменьшается в 2 раза), видом распада, энергией частиц, удельной активностью и удельной массой. Активность нуклида в радиоактивном источнике в системных единицах измеряется к беккерелях (Бк); внесистемной единицей является кюри (ku): 1 ku = 3,7×1010Бк.

    Каждый Р. определяет особенности макро- и микрогеометрии передачи энергии излучения в клетках и тканях, а также реакцию организма на лучевое воздействие (см. Ионизирующие излучения). Р. поступают в организм через органы дыхания, пищеварительный тракт, кожу, царапины, раны, ожоговую поверхность. Наиболее реальными источниками поступления Р. являются воздух, зараженный радиоактивными газами и аэрозолями, а также продукты питания и вода. Величина коэффициента резорбции (всасывания) Р. из места его поступления, а также дальнейшее поведение в организме определяются химическими свойствами элементов (растворимостью, способностью к гидролизу), физико-химическим состоянием, сродством элементов и их соединений тканям и физиологическими факторами.

    По характеру распределения в организме Р. условно делят на 4 группы: 1) сравнительно равномерно распределяющиеся (134Cs, 137Cs, 24Na, 106Ru, 210Ро, 95Nb, 14С, 32S); 2) остеотропные (89Sr, 90Sr, 140Ва, 226Ra, 224Ra, 40Са, 90Y, 91Y); 3) накапливающиеся преимущественно в органах ретикулоэндотелиальной системы и скелете (144Се, 147Pm, 241Am, 238Pu, 239Pu, 227As, 140La); 4) избирательно накапливающиеся в отдельных органах и тканях (радиоактивные изотопы йода — в щитовидной железе, 59Fe — в эритроцитах, 65Zn — в поджелудочной железе, 99Мо — в радужной оболочке глаза). Наибольшее количество Р. выделяется через желудочно-кишечный тракт, особенно плохо из него всасывающиеся трансурановые элементы, лантаноиды. Растворимые соединения, а также Р. с равномерным типом распределения (тритий, цезий) выделяются через почки. Основное количество газообразных веществ выводится через кожу и легкие. Наибольшее количество Р. выделяется в первые дни после поступления. Длительно задерживаются Р. с большой атомной массой, находящиеся в организме и коллоидном состоянии (210Po, 226Ra, 238U) и редкоземельные элементы Р., образующие коллоидные комплексы с белками, поступают в печень и выводятся с желчью. Скорость обмена Р. в тканях характеризуется биологическим периодом полувыведения — временем, в течение которого выводится половина поступившего в организм радиоактивного вещества (Т1/2б). Фактическая убыль Р. из организма измеряется эффективным периодом полувыведения (Т1/2эф) — временем освобождения организма от половины депонированного вещества путем биологического выведения и физического распада. Это сложный процесс, т.к. в отдельных органах Р. имеют свой Т1/2б, который может существенно отличаться от такового во всем теле. Например, 131I в щитовидной железе и во всем теле имеет Т1/2б = 138 сут., в почках — 7 сут., в костях — 14 сут. Кроме того, в одном и том же органе Р. может иметь несколько Т1/2б. В табл. приведены величины физического, биологического и эффективного Т1/2б некоторых Р. для человека.

 

Таблица

Величины периодов полураспада и полувыведения некоторых радионуклидов для организма человека

Радионуклид

Символ

Физический период полураспада, Т1/2ф

Биологический период полувыведения, Т1/2б

Эффективный период полувыведения, Т1/2эф

Тритий

3H

12,

3 г.

12 сут.

12 сут.

Углерод

14C

5730 лет

10 сут.

10 сут.

Натрий

24Na

15 ч

11 сут.

14 ч

Фосфор

32P

14,3 сут.

257 сут.

13,5 сут.

Железо

55Fe

2,

7 г.

1680 сут

819 сут.

Цинк

65Zn

243,9 сут.

1959 сут.

218 сут.

Стронций

90Sr

29,12 г.

35,6 лет

15,6 лет

Йод

131J

8,04 сут.

138 сут.

7,6 сут.

Цезий

137Cs

30,

174 г.

70 сут.

70 сут.

Плутоний

239Pu

2,4065×10лет

178 лет

175 лет

Америций

241Am

433 г.

55 лет

49,3 г.

 

    Воздействие Р. в количествах (дозах), превышающих предельно допустимые величины, ведет к развитию лучевой болезни с преимущественным поражением органов депонирования или всего организма (при поражении равно мерно распределяющимися радионуклидами, например, 3Н или 137Cs). В зависимости от количества, пути и длительности поступления Р. возможно развитие острых, подострых и хронических радиационных эффектов, а также отдаленных последствий.

    Поступление радионуклидов в организм и содержание их в нем у лиц, работа которых связана с профессиональными вредностями, а также у отдельных лиц из населения и у всего населения в СССР регламентируются нормами радиационной безопасности НРБ—76/87, которые устанавливают систему дозовых пределов, и основными санитарными правилами работы с радиоактивными веществами ОСП—72/87 (см. Радиационная безопасность).

    См. также Радионуклидная диагностика.

 

    Библиогр.: Моисеев А.А. и Иванов В.И. Справочник по дозиметрии и радиационной гигиене, М., 1984; Москалев Ю.И. Радиобиология инкорпорированных радионуклидов, М., 1989; Нормы радиационной безопасности НРБ—76/87 и «Основные санитарные правила работы с радиоактивными веществами и другими источниками ионизирующих излучений ОСП-72/ 87», под ред. Г.М. Аветисова, М., 1988; Радионуклидная диагностика, под ред. Ф.М. Лясса, М., 1983.

 
 
 

Комментарии

Alisa  2016.08.04 09:47

Да, у меня знакомая работала в рентген кабинете медсестрой :(

Милана  2016.08.03 19:47

Жаль тех медработников, кому приходится в радиацией работать :(

Alisa  2016.08.03 10:56

Но в целом то это понятие звучит угрожающе.. Сразу вспоминаешь Чернобыль.
Ну так это и есть угроза жизни всего живого... Радиация убивает клетки, останавливает их деление, угнетает биохимические процессы...

Soul  2016.07.26 05:58

Но в целом то это понятие звучит угрожающе.. Сразу вспоминаешь Чернобыль.

Смотреть все комментарии - 5

Ваш комментарий

 
 
Задать вопрос
Самое популярное

Когда и как потерять девственность

Девственность и куриное яйцо. Какая между ними связь? А такая, что жители племени куаньяма, что живет на границе с Намибией, в древности лишали девочек девственности при помощи куриного яйца. Ненамно

Всё о температуре тела

Температура тела - комплексный показатель теплового состояния организма человека, отражающий сложные отношения между теплопродукцией (выработкой тепла) различных органов и тканей и теплообменом между

10 способов сбросить 5 кг

Небольшие изменения в питании и образе жизни помогут изменить ваш вес. Хотите сбросить лишние килограммы? Не переживайте, вам не придется морить себя голодом или делать изнурительные упражнения. Иссл

О насНаши клиентыРеклама медицинских центровМаркетинг для салонов красоты и SPA
Рейтинг Nedug.Ru - клиники Москвы, клиники Петербурга
© 2000-2024 Nedug.Ru. Информация на этом сайте не призвана заменить профессиональное медицинское обслуживание, консультации и диагностику. Если вы обнаружили у себя симптомы болезни или плохо себя чувствуете, то необходимо обратиться к врачу для получения дополнительных рекомендаций и лечения. Все замечания, пожелания и предложения присылайте на mail@nedug.ru